Charcoal

steam pan charcoal stove
steam pan charcoal stove side bottom view
steam pan charcoal stove bottom with perforated lollipop air control
perforated lollipop air control closed

In my continuing quest to use readily available manufactured materials for stove construction, here is the steam pan charcoal stove with "perforated lollipop" air control. It is a 1/6 size steam pan (roughly 6" x 7" x 4" deep) inside a 1/2 size (roughly 10" x 12" x 6" deep) with 1" ceramic fiber board insulation between. The charcoal chamber is lined with expanded stainless steel to extend the life of the inner pan and improve air flow. Army surplus D rings are used for pot supports. Threaded rod for legs. It can be easily disassembled for repair. It has a small charcoal capacity like the BURN's Jikokoa (formerly Tank).
I plan to eventually build a two burner version in a full size steam pan.b

sink charcoal stove
rebar inverted pyramid charcoal stove

The inverted pyramid rebar stove is ubiquitous in Haiti. Lots of radiation and convection away from the pot. No air control. Pot is often placed directly on the charcoal which quenches the charcoal and interferes with good radiative heat transfer.
I cut up a scrap stainless steel kitchen sink, built a sheet metal outer box, put in 1" of ceramic fiber board insulation, and added legs and pot supports. The inverted pyramid grate will have the legs shortened and be placed inside the "sink". A slide gate with sets of progressively smaller holes will be added to the "drain" for air control.

Small gas cooker using pellet biocarbon
Medium gas cooker burning pellet biocarbon
Medium gas cooker with pot and  'Vietnam Magic Fire'
Close up of Medium gas cooker"Vietnam Magic Fire'
pellet biocarbon
Shaped "anthill" biocarbon Briquette

After over 30 years of doing theoretical and experimental research, the authors of this document (Newtech Co., Ltd. in Quy Nhon city, Binh Dinh and Tan My Kim Co., Ltd. in Ho Chi Minh city, Vietnam), until now, have completed all not only modern but also cheap & user-friendly technology solutions which can help the poor all over the world do cooking by gas generated at their home without buying any drops of liquefied gas.

These technologies solutions can be developed in a country or in a big city or small town in any countries in the world, even it is in America, Europe, Australia and especially in Asia and Africa.

The authors believe that the modern but simple technology solutions stated hereby will start an era of a great revolution in cooking for billions of the poor all over the world and they hope that such technology will satisfy all poor persons.

The authors are very willingly to transfer these technologies to the countries in accordance with the international law in order to be together with such countries to help the poor all over the world.

ETHOS Lighting of the stoves
CREEC, Aprovecho Sam and others at ETHOS 2015
StoveTec TLUD with a toasting marshmallow
StoveTec Stove - new Colors
Christa Roth sitting near the StoveTec stoves
Peter Scott and others ETHOS 2015
Kirk Harris TLUD
Rocket Works Stove ETHOS 2015

ETHOS Cooking Stoves Conference in Kirkland, Washington January, 2015.
for more about the next ETHOS Conference see http://www.ethoscon.com/

The ETHOS conference brings together people involved in stove design, dissemination, and testing from Universities, Government, and Non Government organizations, and has themes around the topics of improving cook stove design and performance, reducing emissions, and improving stove adoption, but listening to the needs of the people using the stoves. It ends with the 'lighting of the stoves' which is a demonstration of some of the cooking stoves that people have talked about in the conference.

In addition to capturing photos of the stoves, this year I captured a few pictures of the crowd of attendees comparing stove designs, toasting marshmallows, etc.

The big green stove is the InStove institutional rocket stove http://instove.org/

The lovely people taking pictures were from CREEC ( Energy and Energy Conservation ) which presented a great analysis of current cooking stove tests and some insights to improve them. They also noted that fans typically fail in Uganda, and there are no fans available to replace them.
For more about CREEC see http://creec.or.ug

StoveTec and Aprovecho presented some interesting innovations in stove design that they hope to field test in the coming year. The light green stove has an insulated top door for adding fuel to their TLUD style stove. The purple stove is their rocket stove that has been optimized for improved particulate emissions, with an improved set of colors.
For more about StoveTec stoves see http://stovetecstore.net/
for more about Aprovecho and stove testing see http://www.aprovecho.org/lab/index.php

I was happy to get a good picture of Christa Roth of GiZ her handbook of MicroGasification is outstanding, to download a copy go to https://energypedia.info/wiki/File:Micro_Gasification_2.0_Cooking_with_g...

File attachments: 
  2  FUELS FOR  I STOVE:    COCONUT SHELL CHARCOAL  OR  WOOD (IPIL-IPIL) (Leucaena  leuco
In operation with Wood Fuel and Charcoal
Similar product quality
different emissions
Demonstration
One of the ovens in use.

Eco-Kalan has adapted their Binkga Oven (named ofter the rice cakes that the ovens make) to use both locally available coconut charcoal and stick wood fuel.

The system uses the same oven bottom, and two different covers, one for wood and one for charcoal. Both ovens can bake high quality Bingka rice cakes, but with two different levels of particulate emissions. (Notice the soot on the wood fired oven). However, both ovens are cleaner than the hornohan stove that Eco-Kalan would like to replace.

The Bingka Oven works over a range of cooking temperatures (325 deg. F - 500 deg F) and has can cook both bingka and torta breads (with or without filling). Rebecca is anticipating that it will also work for a wide variety of other baked goods.

They have demonstrated the oven for local parents, teachers, government officials, and others. They have also reached out to people who work with remote communities that in the mountains. The first commercial production will target bakers who are preparing the bingka and torta on the more common and smokey hornohan stoves and anticipate the newer stove will give these bakers the ability to make high quality goods with lower costs and improved health.

See the attached files for details.

Lighting Cone on the Keren Stove no smoke 1 min after lighting
Anglo Supra Nova Stove
Loading the Anglo Supra Nova Stove
Good Fit for Cone Lighting
Lighting Cone on the Anglo Supra Nova
Handles get hot on lighting cones - make them large

Lighting Cones can help make traditional and charcoal stoves light more efficiently and with less smoke than other lighting methods. For the best detail, download the Masters thesis pdf from Kathleen Lask

From Crispin Pemberton-Pigott's Description:

"The main principle is that there should be enough draft to light the fire rapidly. The lighting cone provides this if it is about 500mm tall."

"The second principle is that the bottom of the cone should sort of cover the lighting fuels so that most air is pulled from below, not from the side."

"The third principle is that if there is a secondary air supply at of just below the top of the fuel, the bottom of the cone should bypass it so that the heat inside the cone is not used to pull air through the secondary air ports. Very few stoves have a secondary air controller."

In the result with good fit: "You can just see on the left that it bypasses the secondary and draws all air from below, through the fuel – in this case charcoal. Peter Coughlin reports it reduces the charcoal ignition time by more than ½. We will quantify the smoke reduction and GERES way independently confirm it at some point – it is about 90%."

Lighting stoves can also be used with traditional fires. In tests lighting damp wood in Suba Island "The speed of ignition and reduction in smoke was dramatic. You can just see the hot air distortion of the picture above the cone – basically no smoke. It is quite a bit cleaner than the fire when lit and the cone removed."
The cone on the 3 stone fire is 125

The Stove in the top example is an Anglo Supra Nova.
"It was developed at YDD during the World Bank/Indonesian Clean Stove Initiative."

"It as an Anglo Supra with preheated secondary air. It can burn wood or charcoal, and it can burn wood pellets in TLUD mode. It can automatically switch from pellet burning TLUD pyrolyser mode to char-burning mode by using a disc of paper on top of the grate."

"The loose piece of clay is a door which can close the primary air without affect the secondary air. It provides a significant level of power control without adding or removing fuel. The heat transfer efficiency burning charcoal (it is nominally a charcoal stove) is about 50%. It Is portable with handles and sells retail for about $5.50."

Kathleen’s investigation is attached.

Regards
Crispin

Reinforced Holey Roket Stove
Holey Roket Stove - Drawing (side)
Holey Roket Stove top view

by Joshua B. Guinto
Specialist, Sustainable Village Technologies

1 The Basic Mechanisms of the Rocket Stove. With the lessons from people like Rok Oblak, Richard Stanley and the Aprovecho Institute the author began learning to build the holey roket stove in his workshop at Daet, Camarines Norte. With sheer perseverance and amidst scarcity, he was able to create several models and delivered skills training to poor people in Camarines Norte, Sorsogon and recently in Bulacan.

2. Among the many feedbacks from the users are the limitation of the holey roket stove in terms of (1) fragility in handling and (2) capacity to receive bigger loads when cooking for bigger occasions and events and for food business. In response, one of the models was picked up for reinforcements.

3. The Innovations as of July 2013

the Partnership for Clean Indoor Air (PCIA) December, 2011

PCIA Bulletin Issue 29
http://www.pciaonline.org/bulletin/pcia-bulletin-issue-29

This Bulletin focuses fuels for clean burning stoves. As they note, a lot of effort has been focused on wood burning stoves, but in urban areas, stick wood is hard to come by, and charcoal is a much more popular fuel. There's a good reason for this, studies have shown that charcoal stoves have up to 90% less indoor air pollution than similar wood stoves. In urban areas, there is a noticeable improvement in indoor air quality simply by shifting to charcoal burning. Additionally, biomass fuel briquettes, pellets, and other densified paper burning stoves are showing a lot of promise in urban areas so this bulletin profiles projects that use urban waste to create fuel briquettes that can be sold to stove owners.

http://www.pciaonline.org/bulletin/pcia-bulletin-issue-29

Cecil Cook with Technoshare, November, 2011


Baseline Study of the Socio‐economic Patterns of Charcoal, Wood and Stove use in greater Lusaka, Zambia

Some highlights:

  • Previous stove improvement projects have failed to properly appreciate the central role played by one and two person tinsmith enterprises that produce and sell ordinary mbaulas at very low prices. The tinsmiths of Lusaka constitute a well distributed network of producers and sellers of ordinary mbaulas fabricated from scrap sheet metal who conveniently service all the major markets and townships of the city.
  • In addition to underestimating the multiple competitive advantages of a well distributed network of tinsmiths who fabricate and directly sell a charcoal stove that everybody knows how to operate, previous stove improvement projects failed to appreciate just how poor the bottom 2/3rds of the Lusaka economy really is and how little money low income families are able to save from their daily and weekly income for the purchase of a replacement mbaula when the old one finally breaks down. It is the initial retail price of an improved stove, not how much money it will save a household during the course of a month, that determines whether they are willing and able to spend two, three, four or more times the K4 000 to K6 000 for a 20cm ordinary mbaula. The ordinary mbaula is the industry standard. Every household without access to firewood, no matter how poor, has to pay out at least K4 000 once or twice a year to purchase a replacement mbaula.

Cecil did a good job of discovering the buying patterns in households of at least 3 different income levels, and uncovered that the ordinary (less effecient) Mduala stove has great traction among ordinary lower income members of Lusaka Zambia because the stoves work as expected, and they are inexpensively produced by local stove manufacturers.

He has also shared with us some of the highlights of the report in the attached pdfs.

Pages

Subscribe to Charcoal