October 2011

Promotion of stoves has formed an important part of Liana (NGO) development projects in Northern Tanzania from 2009 to 2011.

As we wanted to offer some choice of stoves to families with very differing means and needs, nine of the better documented models or locally known models were introduced to the farmers in Mwanga and Moshi in the initial theory training sessions. Following an exercise in which each farmer selected a stove type s/he would like to have and could afford to have in her/his home, the number of potentially suitable stoves was reduced. As women became more aware of the dangerous effects of indoor smoke, having a chimney became more and more important and many models without chimney dropped out.

Thus we remained with four main stove models. These are Vita metal stove, Upesi burned clay stove, Lorena mud stove (or built with bricks inside) and a rocket Brick and cement stove. During the process two of the stove models, Vita and Upesi were considerably modified. Vita obtained a short chimney (90cm measured from the middle of the hole to the top, 8x8cm) and Upesi was developed into two slightly different new models, both with a fire grate allowing air intake to the fire chamber through holes in the grate.

As part of our project Save firewood by improved stoves we assessed the stoves. The report of this assessment has the results of the boiling point tests, controlled cooking tests and an interview study on user experiences in Mwanga and Moshi.

You can access the report from the following link:
http://www.liana-ry.org/Liana_docs/Liana_stove_tests_in_tanzania_2011.pdf

Radha Muthiah, Global Alliance for Clean Cookstoves, October, 2011

Quoting "Prof. S.C. Bhattacharya" :

Dear all,

I would be happy to share some publications arising from the following
activities at the Asian Institute of Technology:
1. Sida funded Regional project: An information package (including
construction details) on biomass briquetting machines developed in a
number of Asian countries and design of natural- cross-draft gasifier stoves that can operate continuously is available. The briquetting machines developed
were improvements on standard screw-press heated die design. Cross-flow
gasifier stoves were designed for different sizes; these do not need any
blower and can operate continuously without any smoke.

The briquetting and gasifier stove work I mentioned was carried out under a
Sida-sponsored project at the Asian Institute of Technology (AIT). The
project involved researchers from 12 national research institutes of six
Asian countries, e.g., Bangladesh, Cambodia, Lao PDR, Nepal, Philippines and
Vietnam. The findings of the project were disseminated through national
dissemination seminars in these countries; published "Technology packages"
were distributed widely in the region and are still available for
downloading from the project website. We organized technology transfer
workshops, in which a number of NGOs form the region were invited, on most
of the technologies developed.

(There is no restriction on distribution of the technology packages.)

Unfortunately, the link of the project is not working due to heavy flood in
Thailand; AIT appears to be still under 2 m of water.

2. GTZ funded project on Biocoal: We used the term "Biocoal" (rather than
"Biochar") for charcoal produced from solid organic residues such as
agricultural residues and waste wood. The findings of the project were
reported in a book titled "Biocoal Technology and Economics" by "Regional
Energy Resources Information Center (RERIC)" (email:enreric@ait.ac.th).

The chapters of the 495-page book were:

  • 1. State of the art of biocoal technology,
  • 2. Biocoal technology: A comparison of options and recommendations,
  • 3. Carbonisation of sawdust briquettes,
  • 4. Laboratory-scale batch carbonisation selected residues,
  • 5. Cost and availability of selected residues in Thailand,
  • 6. Characterisation of selected residues,
  • 7.Biocoal: Market requirements and Opportunities in Thailand, and 8. Economics of biocoal production in Thailand.

A few copies of the book are still available with RERIC. A number of
chapters of the book were summarised as journal articles; I will be happy
to
share some of these with interested persons for their personal use and
research purpose.

Other technology packages and published papers of the Sida project can be downloaded from www.retsasia.ait.ac.th. The biomass/stove group may be interested the package on drying, which includes a hybrid drier using solar energy and bioenergy from a gasifier stove, heat output of which could be automatically controlled by using a thermostat.

I also coordinated another regional project (Asian Regional Research Programme in Energy, Environment and Climate, ARRPEEC) funded by Sida in three phases during 1995-2005. One of the 4 projects of ARRPEEC was on biomass. Dissemination booklets of ARRPEEC and some of the papers published can be downloaded from http://www.arrpeec.ait.ac.th

As the United States biomass thermal and power industry continues to expand, new reliable technologies offering higher efficiency solutions must be introduced. The newly introduced EOS series biomass gasification boiler is among the most energy efficient of AESI’s high-performance, low-maintenance biomass energy plants. The EOS series provides thermal outputs ranging from 600,000 BTU/hr to 20 million BTU/hr, and can be staged to provide increased capacity.

Designed and built by the leaders in the biomass waste to energy market in Europe, Uniconfort, the EOS series builds upon over 50 years of experience and over 4000 successful installations throughout the world. When asked about the highly efficient EOS series, CEO of Uniconfort Davis Zinetti notes, “we must not forget that greater efficiency is associated with less CO2 production. Choosing EOS, therefore, means making a choice in favor of the environment.”

Mussie T. (Lecturer at Mekelle University, Ethiopia), October, 2011

This is a Natural Draft Gasifier stove, that is designed with a central column of air that is designed to burn more common Ethopian fuels, e.g. coffee husk and saw-dust (cow dung binder) briquettes in addition to more conventional wood chips.

the air column is drilled on the surface so as to let additional primary air radially into the fuel at different stages to compensate for air clotting that can occur when run with small sized fuel as you go up from along fuel column. This helps the flaming pyrolysis from being air starved due to interlocking of fuel particles. In addition to that, closely spaced holes of relatively larger size were made near the top of the central air column to supply more hot post‐pyrolysis secondary air. The presence of two hot secondary air admission points is meant to supply enough air while keeping the stove short with reduced heat loss.

Once the stove has enough fuel, it is typically started with wood chips, or an accelerant to help the briquettes light, and then in all of the trials it burned without smoke until the fuel tank was filled with charcoal (typically between 60 and 90 minutes later). This is a biochar-producing stove, the stove does not efficiently combust it. Friability and the composition of the char depended upon the feedstocks.

For an excellent analysis of the stove, and pictures of the biochar, please see the included Report: Results from Preliminary Experiments Conducted on Multi‐level
Primary Air Entry Gasifier Stove

Andrew C. Parker, October 2011

Lion Cub Stove
A variation on Larry Winiarski's 16 Brick Stove
and Crispin Pemberton-Pigott's Lion Stove

"I had been waiting all Summer to use my brother's StoveTek
stove to do some experiments. While searching a reference

Here is a report on the recent micro gasifier camp in Honduras from Timothy Longwell

Hugh McLaughlin, September, 2011

I may have solved a design issue with the combustion of the wood gas in a TLUD. I call it the "Toucan Flair", which is a play on words (flair > flare) because the distinguishing feature is an axial tube providing "axial air" to the secondary combustion zone. This axial air source is coupled to the primary air source, which is controlled by a small fan pressurizing a plenum to support the two burners provided for the entire stove.

Additional "scroll air" enters in the riser above the ignition level for the wood gas, providing a concentrated region of combustion. Depending on how much wood gas is generated, as controlled by the degree of fan assist, the flames can be driven to the bottom of the pot, but the unit can also simmer as required (see photos).

This geometry basically turns the concentrator disk inside out - and make for a preheated expanding jet of wood gas, that is consumed by the excess scroll air. Axial and scroll are burner terms for air injected inside the fuel and provided on the perimeter of the fuel. The terms may well be engineering slang. However, the effect is significant, based on my comparison of the side by side configurations (Toucan Flair versus traditional concentrator disk TLUD).