Africa

Jan Bianchi, November, 2011

Paal Wendelobo, October, 2011

The Peko Pe TLUD project in Zambia is going well.

Paal describes it best:

" The main principals for our projects I will call it community based participation both for fuel and for stove productions. Utilization of local resources with other words.. The Peko Pe is designed for production by local tinsmith with the tools they might have. They only need a template and a model; they have the knowledge how to make it.

" First of all we discuss the need of changes, and then on the fuel side we start up with registration of alternative biomass for fuel for briquetting, energy forestry for fuel production. We always start with the fuel .to be sure there is sufficient quantities and to an affordable price.

"The charcoal business, which represents about 15 % of the adult population, has to be involved from an early stage of the project. All kind of activities on the household energy sector will in one or another way have an influence of their business, and with biochar we don’t know what will happen, but that is one of the ting we will try to find out. Any how for the charcoal business it is just to change from charcoal to alternative biomass for household energy.

"The energy loss by production of biochar for soil improvement is almost equivalent to the energy needed for the farmer to cook if you include the African way of thinking time is coming not like by us time is running That is a big difference. A household need about 2,7 kg charcoal a day for cooking. Form about 10 kg of dry wood you will get 2,7 kg of charcoal for one day cooking and no biochar. From .10 kg of dry wood you will get 10 kg of woodchips and that will be for 2 ½ day of cooking into a TLUD-ND. and about 2.7 kg of biochar. The pilot project will tell us if this is right or wrong."

" A common Miombo forest in Africa will give about 3 ton wood per ha a year. 3 ton of dry wood will give 800 kg of charcoal. A household of 5 consume 2-3 kg charcoal a day or about 800 kg a year. To produce 3 kg of charcoal you need 10-12 kg of dry fire wood in a common kiln. That will give one day cooking on a charcoal stove, and almost no biochar. 10-12kg dry chopped wood will give 3 days of cooking on a TLUD-ND or another FES and 2.5 kg of biochar
Energy forestry using just the sprouting every year can give up to 10 ton wood per ha a year, easy to cut to appropriate fuel for TLUD-ND’s or other types of FES. By adding some biochar to soil of bad quality 20-30 % increased yields can be obtained, which will give more food, more household energy, more jobs, better economy, better health for women and children and saving the forest. It can probably be as simple as this and is that not some of what we are looking for and need?
We know some changes have to take place on the household energy sector and we have to start somewhere. Why not start with small scale farmers on sandy soil, and from there develop the new household bio-energy strategy for developing countries. Probably also with the charcoal business, they have the whole infrastructure intact and can easy change from charcoal to alternative biomass like chopped wood or pellets from agriculture and forestry related waste. "

Promotion of stoves has formed an important part of Liana (NGO) development projects in Northern Tanzania from 2009 to 2011.

As we wanted to offer some choice of stoves to families with very differing means and needs, nine of the better documented models or locally known models were introduced to the farmers in Mwanga and Moshi in the initial theory training sessions. Following an exercise in which each farmer selected a stove type s/he would like to have and could afford to have in her/his home, the number of potentially suitable stoves was reduced. As women became more aware of the dangerous effects of indoor smoke, having a chimney became more and more important and many models without chimney dropped out.

Thus we remained with four main stove models. These are Vita metal stove, Upesi burned clay stove, Lorena mud stove (or built with bricks inside) and a rocket Brick and cement stove. During the process two of the stove models, Vita and Upesi were considerably modified. Vita obtained a short chimney (90cm measured from the middle of the hole to the top, 8x8cm) and Upesi was developed into two slightly different new models, both with a fire grate allowing air intake to the fire chamber through holes in the grate.

As part of our project Save firewood by improved stoves we assessed the stoves. The report of this assessment has the results of the boiling point tests, controlled cooking tests and an interview study on user experiences in Mwanga and Moshi.

You can access the report from the following link:
http://www.liana-ry.org/Liana_docs/Liana_stove_tests_in_tanzania_2011.pdf

Mussie T. (Lecturer at Mekelle University, Ethiopia), October, 2011

This is a Natural Draft Gasifier stove, that is designed with a central column of air that is designed to burn more common Ethopian fuels, e.g. coffee husk and saw-dust (cow dung binder) briquettes in addition to more conventional wood chips.

the air column is drilled on the surface so as to let additional primary air radially into the fuel at different stages to compensate for air clotting that can occur when run with small sized fuel as you go up from along fuel column. This helps the flaming pyrolysis from being air starved due to interlocking of fuel particles. In addition to that, closely spaced holes of relatively larger size were made near the top of the central air column to supply more hot post‐pyrolysis secondary air. The presence of two hot secondary air admission points is meant to supply enough air while keeping the stove short with reduced heat loss.

Once the stove has enough fuel, it is typically started with wood chips, or an accelerant to help the briquettes light, and then in all of the trials it burned without smoke until the fuel tank was filled with charcoal (typically between 60 and 90 minutes later). This is a biochar-producing stove, the stove does not efficiently combust it. Friability and the composition of the char depended upon the feedstocks.

For an excellent analysis of the stove, and pictures of the biochar, please see the included Report: Results from Preliminary Experiments Conducted on Multi‐level
Primary Air Entry Gasifier Stove

Practical Action, Kenya

The Upesi stove, also known as the Maendeleo has been successful in Kenya. It has two parts, a simple pottery cylinder with pot rests (known as the liner) that is built into a mud surround in the kitchen. Fuel is fed into the fire through an opening in the front of the stove, and it has no chimney, but it produces much less smoke than an open fire.

for all your cooking needs,
save energy, cook more food.

Take a look at the Cookswell Web site for more information:
http://www.reskqu.blogspot.com/

Teddy Kinyanjui, Musaki Enterprises, Nairobi, Kenya

For all your domestic cooking needs,

High quality original Kenya Ceramic 'Cookswell' Jikos cookstoves of all sizes shapes and use's.

Save up to 70% on elelctricity/ LPG gas use by switching to biomass charcoal.

see http://www.kenyacharcoal.blogspot.com for more information. 『アディダス』に分類された記事一覧

Crispin Pemberton-Pigott April, 2011

International, DUE (Domestic Use of Energy) Conference
12 - 13 April 2011

Cape Peninsula University of Technology
Cape Town Campus, South Africa

See attached Brochure:

A sample of the conference presentations

Design Features of Solid Fuel Stoves: Workshop Discussion
Mr Crispin Pemberton-Pigott, New Dawn Engineering, Ontario

The Uncontrolled Cooking Test: Measuring Three-Stone Fire Performance in Northern Mozambique
Mr James Robinson, University of Johannesburg, Auckland Park,

A Preliminary Comparison between the Heterogeneous Protocols and the Water Boiling Test
Mr Tafadzwa Makonese, University of Johannesburg, Auckland Park,

The results of field testing the POCA/Maputo Ceramic Stove (MCS) and traditional metal stoves (TMS) using an uncontrolled cooking test (UCT) are attached. In a UCT people cook whatever they want and we watch carefully. The results have fuel-moisture compensated values. The charcoal was almost always hardwood lumps. Larger meals tend to be watery and small meals tend to be frying something in oil.

The comparison indicates a clear change in relative performance with meal size. The bigger the meal, the more the savings with the improved stove. There is also a chart attached showing the increase in thermal efficiency with meal size.

The meal size on one the X-axis.

The WBT locates one point on the line. Performing the test seven times locates that point very accurately but is it difficult to know where the line goes from that point.

No ‘outliers’ were removed in this analysis even when they were obvious. The meal size varies with the season so the question about consumption has more than one answer.

Regards
Crispin
Air Jordan

Crispin Pemberton‐Pigott October, 2008
Sustainable Energy Technology and Research Centre University of Johannesbrg 
Programme for Basic Energy Conservation GTZ/ProBEC a SADC Regional Project 

See the attached pdf: CERAMIC DEVELOPMENT FOR DOMESTIC STOVES 

Also take a look at Crispin's very good ceramic stove image galleries.

It is intended that this brief report describe in an accessible manner the results of some basic research into the performance of ceramic materials suitable for use to make modern, low‐cost improved charcoal stoves. The 
theatre of investigation is the area around Maputo, Moçambique. 

 The information and ideas are assembled from a large number of tests and reports. If studied carefully an understanding can be gained of the 
principle ingredients found in typical clays. It is hoped enough can also
 be learned about what the tests show so as to interest the ‘stover’ in a 
deeper study of this vast subject.  

Some reasons why clay stoves and stove components typically have such a 
short life are described and to a certain extent, what can be done about 
it.   

There is a great deal of material available on how to find, identify and 
process clays such as pottery books and the internet. It is not repeated 
here.  Unfortunately very little of the material available is geared to 
the design of low cost ceramics stoves which have problems not encountered
 in many industrial applications with far higher temperatures.  

Ceramics are complex mixtures of many minerals so it is not possible to 
give comprehensive explanations in such a brief text, however the novice 
reader should learn enough to be able to deal with a laboratory and 
understand some common terminology and the test results.  There have been
 many technological advances in recent years making accessible tests and 
analyses that were previously unaffordable to the ordinary potter.

Pages

Subscribe to Africa