WOODY BIOMASS SUPPLY CHAINS (POTENTIAL ALTERNATIVES TO CHARCOAL)

By Paul Means (Burn Design Lab) & Chris Lanning (Forest Concepts)

Woody Biomass Supply Chains

• Purpose:

• To outline the benefits and gaps in the application of dried and sized biomass fuels in comparison to charcoal

• Outline:

- Background
- Efficiencies & Value Chains
- Size Reduction
- Drying
- Transport Considerations
- Fuel Utilization
- Kenya Stove A Pilot Project
- Prerequisites Where does this approach fit?
- Next Steps (Gaps)

Background

Charcoal Use

- Sub-Saharan Africa
 - 11% of population use charcoal as primary fuel.
 - 69% use woody biomass as primary fuel.
- Kenya, 30% of urban dwellers use charcoal as primary fuel
- Uganda, 60% of urban population use charcoal

Background – cont.

- Advantages to Charcoal
 - Employment
 - The estimated charcoal producers in Kenya is 200,000.
 - Approximately 500,000 people engage in downstream-processing and trade.
 - the economic value of the charcoal industry in SSA may exceed US\$12 billion by 2030, employing almost 12 million people.

- Clean burning low particulate emissions
- Very convenient
- Fuel Conservation user can save unused fuel.
- Low capital production

Background – cont.

Issues with Charcoal

- Environmental Impact charcoal made from live trees (Deforestation rate in Sub-Saharan Africa ~0.8%)
- In Kenya 2006, biomass demand was estimated at 38.1 million tonnes against a sustainable supply of 15.4 million tonnes, creating a demand-supply deficit of 60 percent.
- High CO emissions from burning charcoal
- Low production efficiency

System Efficiency – Traditional Charcoal Production & Use

Value Chains

• Sized & dried biomass

Pelletized biomass

Wood Production	Size Reduction, Drying & Densification	Transport	Wholesale / Retail	Consumption
Low Consumption	 Moderate Efficiency High Capital 	 High Energy Density 	 Not Established 	 High Efficiency Low Emissions

System Efficiency – Sized & Dry Biomass

3+ Fold increase over improved charcoal system efficiency

8+ fold increase over traditional charcoal system efficiency

Pellet Production
Screw Chipper
Lathe & Crumbler®
Chopping & Splitting

in anna

Output Densification / Pelletization

- Mech. Energy (kW-hr/t)
 - 125 225
- Benefits
 - High Density
 - Low Moisture
 - Very Uniform Size & Shape
 - Material handling
 - Good flowability
- Limitations
 - Requires consistent feedstock
 - High Grit intolerance
 - Dust & Fire Hazards

• Auger Chipper

- Mech. Energy (kW-hr/t)
 - 25-140
- Benefits
 - Simple Design
 - Efficient
 - Moisture tolerance
 - Effective over wide moisture range

Limitations

- Material handling
 - Low flowability
- Grit intolerance
- Product size range
 - Larger particles
- Wide piece size distribution

Lathe & Crumbler®

- Mech. Energy (kW-hr/t)
 - 15 60
- Benefit
 - Very Efficient
 - Uniform product
 - Transportable & Flowable
 - Narrow size distribution

• Limitations

- Size range
 - 16 mm maximum in 1 dimension
- Grit intolerance
 - Grit wears blades
- Lathe Out of round material
 - Lost yield, can be difficult to start

Size Reduction – cont.

• Choping & splitting

- Mechanical Energy (kwhr/t)
 - 5 20
- Benefits
 - Low capital
 - Existing technology
 - Efficient
 - Uniform size
 - High grit tollerance
- Limitations
 - Very labor intensive
 - Limited size distribution
 - Variable size

Mechanical Energy Requirements

Drying

Types

- Rotary drum
- Fluidized bed
- Belt
- Deep bed (grain)
- Tarp
- Fuels
 - Fossil fuel
 - Electric (very limited)
 - Wood / biomass
 - Sun

Air / Solar Drying

Types

- Rotary drum
- Fluidized bed
- Belt
- Deep bed (grain)
- Tarp
- Fuels
 - Fossil fuel
 - Electric (very limited)
 - Wood / biomass
 - Sun

Transport Considerations

Haul Cost Multiplier

Hauling Cost
 Impact due to
 2.5
 lower net heating
 value for raw
 biomass.

Transport Considerations

Forest Area Required and Relative Haul Distance

Transportation Considerations – cont.

3/19/2013

Transport Considerations – cont.

The bulk energy density of sized and dried woody biomass is equal to or better than that of charcoal.

Fuel Utilization

- Micro-Gasifiers get their day in the sun..
 - Efficiency = 40+%
 - Low CO and Low PM2.5 emissions
 - Well suited for standard sized dry woody biomass fuel.
- Suited for commercial & industrial energy systems

Kenya Stove Pilot Project

- Conducting proof-of-concept in Kenya.
- Sustainable fuel supply chain of invasive mesquite wood chips, quality controlled and optimized for use in the stove.
- Novel micro-gasifier design with adjustable grate height.

Prerequisites – or Where do these approaches fit?

- Woody biomass supply available ideally wood lot crop.
- Urban markets with ability to pay (currently using charcoal)
- Partners prepared for:
 - market development costs
 - technology development costs
 - mitigating the social impact of the technology change.

Conclusions

- Size reduction & drying of woody biomass, combined with microgasification can displace charcoal as a fuel for urban dwellers.
- These new value chains, if developed, Have the potential to
 - Reduce forest usage up to 87%
 - Substantially Reduce indoor air pollution.

Next Steps – Gaps to Fill

- Comparative Economic Analysis of Value Chains
- Selection / Development of right sized equipment for size reduction.
- Evaluation of alternative drying technologies. Selection considerations similar to size reduction equip.,
- Micro-Gasifier Stove performance vs. fuel size & distribution, shape, density, etc.
- Transportation, Storage, & Handling vs. Fuel Properties
- Pilot Operations
- Optimization of the fuel System Wide for:
 - Low capital cost
 - Low purchased energy costs
 - Storage, handling, & combustion characteristics
- Bracket Core Technology Assessment with:
 - Social Compatibility Assessment.
 - Operational Assessment

Thank You! Questions?

Paul Means paul@burndesignlab.org

Chris Lanning clanning@torestconcepts.com