progress in assessing stove emissions in the field and laboratory

Tami C. Bond, Christoph Roden Department of Civil & Environmental Engineering University of Illinois at Urbana-Champaign *Stuart Conway* Trees, Water and People *Anibal Benjamin Osorto, Ignacio Osorto Nuñez* AHDESA *Dean Still, Damon Ogle*

Aprovecho Research

ETHOS Conference Kirkland, Washington 29 January 2005

Last year's proposal

quantity nee creasing

increasing complexi

expense

increasin

I. In-field monitoring confirm improvements rapid feedback to stove artisans II. Stove design lab evaluate design choices demonstrate emission improvements III. High-end (university) testing validate less-expensive measurements understand nature of emissions

Summary of measurements needed

Carbon monoxide

- Particulate matter
- Some way of relating measured pollutant to fuel burned
- Real-time data collection; data reduction

Emissions (direct from stoves)

Room concentrations (proxy for exposure)

Stove design lab at Aprovecho

Fully functional measurement lab

Emissions with Dale Andreatta's exhaust hood

Room concentrations in simulated kitchen

Results from 16 stoves- please see Dean Still's poster!

"Lab on a cart"

Size: 24" x 36" x 19" Power: 12v car battery Runtime: approximately 5 hours Cost: About \$14k

Christoph Roden, PhD student

Measurements:

Similar to Aprovecho, with some additions

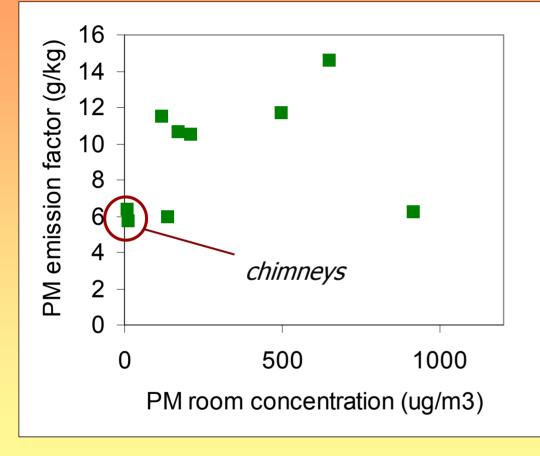
- Real-time CO and CO₂
- Real-time optics
 - nephelometer (approximately particle mass)
 - absorption meter (particle color/type)
- Particles also collected on filters for later chemical analysis

Honduras project

umbrella: Trees, Water, & People

- Stove Improvement
 AHDESA & Aprovecho
- Dissemination
 AHDESA & TWP
 (Stuart Conway's talk)
- Monitoring
 UIUC & AHDESA

funded by PCIA UIUC participation largely funded by NSF


- Measure emissions & room concentration simultaneously
- Gather in-field measurements of emission rates
- Train AHDESA in monitoring
- Gather information for other projects

Homes are fairly open.

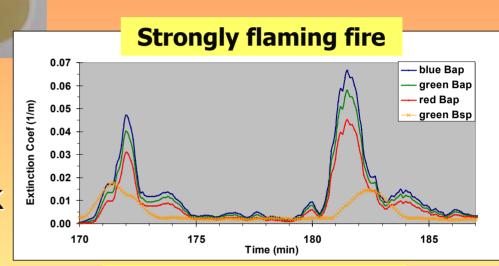
- + 14 homes tested (12 with room monitoring)
- Temperate climate
- Kitchens:
 - open windows (no glass)
 - detached from house, with open walls
- Somewhat unexpected observations:
 - fire continually hot
 - extensive consumption of construction debris
 - presence of refrigerator reduces cooking time
 - very large wood pieces

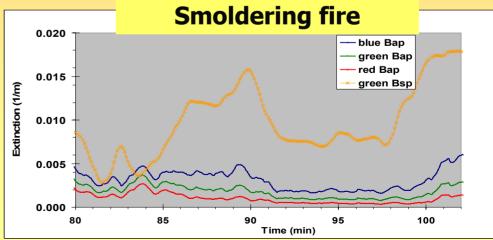


Emissions vs room concentrations

Chimneys appear effective in more than one way (but note small sample size) • Remove pollutants from room

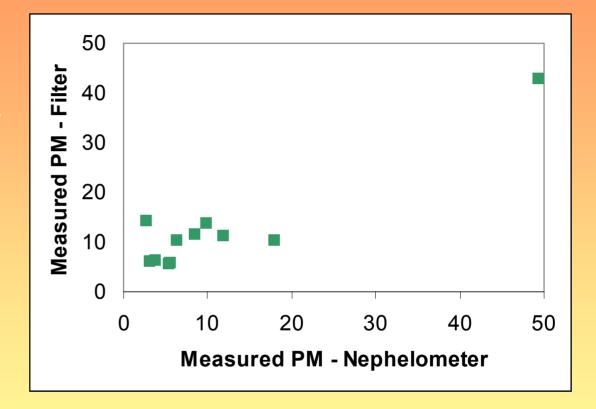
Variations in room concentrations


storage


- Measured with 4 HOBO dataloggers
- "Near-stove" higher than "Official" by ~50-200%
- Need to have discussion about locations

Evaluating our present PM measurement (I)

Weighing filters:


- well-accepted method
- requires balance, patience, & practice
 no real-time feedback
- Real-time optics:
 - gives immediate feedback
 - requires assumption about particle properties

Evaluating our present PM measurement (II)

Our present investigation: *what factors* can make this measurement more accurate? chemical composition particle sizes

Can the "cart" get smaller & cheaper?

 Cost without particle monitoring: \$650 (CO, CO2, data logging)
 Still need a laptop – We'll be working on that
 Biggest need: Small, cheap particle monitoring (Kirk's device?)