# Characteristics and Climate Implications of Particles Generated by Traditional Wood Burning Cookstoves

Christoph Roden March 29, 2005

# Outline



- Biofuel
- Influences that Aerosols have on climate
- Sampling Cart
- Real-time data
- Emission Factor ours / comparison
- Conclusion

# Biofuel

**1867** 

- What is Biofuel?
- 2.4 billion people use biofuel for heating and cooking.
- Indoor air pollution from burning of solid fuel kills 1.6 million people per

year.

World Health Organization (www.who.int) http://www.itdg.org/?id=smoke\_index

- Particulate emissions from biofuel are poorly characterized.
- Emissions from the burning of biofuel have climatic effect.



http://www.itdg.org/?id=smoke\_index



http://www.trekearth.com/gallery/Central\_America/ Nicaragua/photo101920.htm



http://www.geocities.com/dieret/re/Biomass/biomass.html



- CO<sub>2</sub> Green House Gas
- **CO** Health concerns
- NO<sub>x</sub> Ozone precursor
- VOC Health concerns & Ozone precursor
- Carbonaceous Particles Health concerns
  - Black Carbon (BC)
  - Organic Carbon (OC)

## Contributions to Climate change



The global mean radiative forcing of the climate system for the year 2000, relative to 1750



Level of Scientific Understanding

# Particles' effects on Climate

- Carbonaceous aerosols are classified as either Black Carbon (BC) or Organic Carbon (OC).
  - BC is an excellent light absorber in the visible range
     considered warming.
  - OC Scatters sun's radiation considered cooling
- Both BC and OC are emitted together by incomplete combustion processes.
- Both usually small particles (1um or less in diameter)



## BC and OC sources





# Sampling Cart Measurements



<u>Real Time Measurements:</u>
Light Absorption by
Particles
Light Scattering by
Particles
CO and CO2
concentrations

#### Integrated Measurements:

Total Mass concentration Teflon filter
Total Carbon and EC/OC

split

Quartz filter with back-up.





# Honduras





- Population ~7,000,000
- Capital is Tegucigalpa which sits at 1000 m
- Climate temperate mountains





#### Typical Honduran Cookstoves and Kitchens



## **Emission Sampling Cart**

#### Portability

- Size: 24" x 36" x 19" (W x H x D)
- Power: 12v car battery 100W total power
- Runtime: approximately 5 hours



#### Testing

- Conducted a total of 12 tests.
- Typical test included:
  - 10 minute pre-cooking ambient conditions
  - 1.5 to 3 hours of measurement during cooking
  - 10 minutes of post cooking measurements





#### Flaming Emission Characteristics

Large Visible Flames
Strong absorption and scattering
Occurs while volatile matter is being rapidly released from wood

- Lower SSA
  Often large EC fraction
  Higher Emission Factors
- •Higher Emission Factors



### **Smoldering Emission Characteristics**

- •No flame, mostly white smoke
- •Strong Scattering.
- •Very low absorption
- •Generally high CO emission
- High SSAProbably mostly OC



### **Emission Factors**



• Emission Factor – mass of particulates emitted per mass of fuel combusted

$$EF\left(\frac{g}{Kg\_wood}\right) = \left(\frac{Filter\_mass}{Volume\_sampled}\right) \times \left(\frac{1}{\Delta\_CO_2 + \Delta\_CO}\right) \times \left(\frac{m^3\_CO_2}{0.473Kg\_C}\right) \times \left(\frac{1Kg\_C}{2Kg\_wood}\right)$$



# EF Comparison with Previous Work



•Our field emission factors are significantly larger than previous lab measurements.

•Lab measurements and procedures do vary from real world cooking fires

✓ Wood is sometimes added at uniform intervals.

✓ Water boiling test is most common test: boil 2.2 kg water and then simmer for 30 minutes.

✓ Lab tests use uniform sizes of wood with similar wood moisture.

✓ Lab Tests aim for uniform and consistent burning.

 $\checkmark$  Exhaust flows vary between lab tests and field tests



Range is mean +/- one standard deviation



For climate implications, the ratio of Elemental Carbon (EC) to Total Carbon (TC) is critical in determining warming versus cooling. (TC = OC + EC).



EC/OC analysis was performed using quartz filters with backup filters to subtract positive artifacts. The filters are analyzed using the thermal method on a Sunset analyzer.

# Summary



- Biofuel emissions are currently poorly represented in climate models.
- Field-based emission factors of wood cooking fires in Honduras are higher than predicted by previous lab work.
- EC/TC ratio can be highly variable for biofuel emissions from the same region.
- The SSA of particles generated from small cooking fires can be very low, with some instantaneous readings around 0.1 and the average of all tests around 0.5.

## Acknowledgements

- Dr. Tami Bond
- Trees, Water, People.
- Honduran Association for Development (AHDESA).
- Group members
- This project is supported by the National Science Foundation under grant #ATM-0349292 Program and the U.S. Environmental Protection Agency's Partnership for Clean Indoor Air.



# QUESTIONS



