How To Design a Rocket Stove

Sizing the combustion chamber to the pot size

Pot size	Entrance to combustion chamber L cm	Cross sectional Area of entrance $\mathrm{L}^{2}=\mathbf{A}$ cm^{2}	Inner Perimeter of combustion chamber $\mathbf{P}_{\text {inner }}$ cm	Outer circumference of combustion chamber (assuming 5 cm thick bricks) $\mathbf{C}_{\text {outer }}$	Gap $^{\mathbf{a}}=\mathbf{A} / \mathrm{P}_{\text {inner }}$ Distance between the pot and the inner perimeter of the combustion chamber cm	Gap $^{\text {b }}=\mathbf{A} / \mathbf{C}_{\text {outer }}$ Distance between the pot and the outer edge of the combustion chamber cm
1-15L	11 cm by 11 cm or	121	44	87.9*	2.75	1.37
	12.5 cylindrical	122	39.2	87.9*	3.1	1.37
$\begin{aligned} & 15- \\ & 50 \mathrm{~L} \end{aligned}$	15 by 15	225	60	78.5	3.75	2.86
$\begin{aligned} & \text { 50- } \\ & 100 \mathrm{~L} \end{aligned}$	16.5 by 16.5	272.25	66	83.2	4.12	3.27
$\begin{aligned} & 100- \\ & 150 \mathrm{~L} \end{aligned}$	20 by 20	400	80	94.2	5	4.24
$\begin{aligned} & 200- \\ & 250 \mathrm{~L} \end{aligned}$	22 by 22	484	88	100.5	5.5	4.81

(*This is based on a common size single pot rocket stove that has a 28 cm diameter stove body. Obviously a stove body with a larger diameter would require an even smaller Gap ${ }^{\text {b }}$

The numbers that are given for Gap ${ }^{A}$ and Gap ${ }^{B}$ are minimums. If flow problems exist with these dimensions then the gaps can be increased by 5 mm .

The thickness of the insulation under the pot is equal to the height of the pot supports minus the required Gap.
Take the 20 cm by 20 cm combustion chamber as an example. If 6 cm pot supports are used and we require a 4.24 cm Gap $^{\text {B }}$ then we need to fill the stove with 1.76 cm of insulation. Notice that in the plans a 1.7 cm square mould is welded on the stove at Gap ${ }^{B}$
)

To calculate Gap ${ }^{\text {A }}$ (the distance between the pot and the inner perimeter of the combustion chamber) use the equation:
Gap $^{\mathbf{A}}=$ Area
Inner Perimeter of combustion chamber
To calculate Gap ${ }^{B}$ (between the pot and the outer edge of the combustion chamber) use:

$$
\text { Gap }^{\text {B }} \quad=\quad \underline{\text { Area }} \quad \text { Circumference }=[(\mathrm{L}+7-10 \mathrm{~cm}] * 3.14)
$$

To calculate the Gap ${ }^{\mathrm{C}}$ (under the outer edge of the pot and the stove body) use Gap $^{\text {C }}=\quad$ Area Circumference ${ }_{\text {Pot }}$

To calculate Gap ${ }^{\mathrm{D}}$ (between the sides of the pot and the stove body) use
Gap $^{\mathbf{D}} \quad=$ Gap $^{\text {C }} * 0.75$

Determining the volume of a pot or of a stove body

Volume $=\mathbf{A}($ Cross sectional Area of cylinder $) *(\mathbf{H})$ Height of cylinder

To determine the circumference of the pot skirt
$\mathrm{C}=\mathrm{D} * 3.14$
$\mathrm{C}=\mathrm{D}\left[\right.$ Pot diameter + Gap $^{\mathrm{D}}+$ gap $^{\mathrm{D}}+1 \mathbf{t}($ thickness of metal $\left.)\right] * 3.14$

To determine the height of the combustion chamber use

Height of stove entrance $=X$
Height of combustion chamber above stove entrance $=1.5 \mathrm{X}$
Total Height of combustion chamber $(\mathbf{T H})=X+1.5 \mathrm{X}+5 \mathrm{~cm}$ (for thickness of insulation)

$T H=X+1.5 X+5 \mathrm{~cm}$

For example, the 60L institutional stove has these approximate dimensions

TO determine the height of the shelf above the bottom of the combustion chamber use Shelf height $(\mathbf{S H})=0.3 \mathrm{X}$

Common dimensions for a single pot Rocket stove

