Lu, 1998 #13 Page 1

Reference Type

Journal Article

Record Number

13

Author

Lu, Guoqing

Kim, Heejoon

Yuan, Jianwei

Naruse, Ichiro

Ohtake, Kazutomo

Kamide, Mitsushi

<u>Year</u>

1998

Title

Experimental Study on Self-Desulfurization Characteristics of Biobriquette in

Combustion

<u>Journal</u>

Energy & Fuels

<u>Volume</u>

12

<u>Issue</u>

4

Pages

689-696

Start Page

Epub Date

Date

Type of Article

Short Title

Alternate Journal

<u>ISSN</u>

DOI

doi:10.1021/ef970194c

Original Publication

Reprint Edition

Reviewed Item

Lu, 1998 #13 Page 2

Legal Note

Accession Number

Call Number

Label

Keywords

Abstract

A new kind of biobriquette, with scallop shell as desulfurizer, was developed in this study, and its self-desulfurization behavior was studied by combustion experiments. For comparison and further understanding on the self-desulfurization characteristics, the biobriquettes with Tsukumi limestone and calcium hydroxide as desulfurizers were also investigated experimentally. The influence of the furnace temperature, types of coal and desulfurizer, and structure of added desulfurizer on the behavior of desulfurization was elucidated by measuring the time concentration history of SO2 emission in combustion flue gas and calculating the desulfurization efficiency. The desulfurization efficiency was not sensitive to the temperature in the range 9731173 K. However, the efficiency was strongly affected by coal type, and it changed from about 25 to 67% for the eight tested types of coals under the same experiment conditions. The desulfurization efficiency has been found to also be a function of the calcination temperature of desulfurizer. On the basis of experimental results, a shrinking-core reaction model was used to simulate the desulfurization process during the char combustion of biobriquette by a finite volume numerical method. The calculated results generally agreed with the experimental results. Finally, an improvement on the biobriquette structure, namely dual layered biobriquette, was proposed and tested in order to improve the desulfurization efficiency.

<u>Notes</u>

Research Notes

URL

http://pubs.acs.org/doi/abs/10.1021/ef970194c

File Attachments

Author Address

Figure

Caption

Access Date

Translated Author

Lu, 1998 #13 Page 3

Translated Title

Name of Database

Database Provider

<u>Language</u>