PROCEEDING ARECOP PHASE III SECOND PTA MEETING **22-25 January, 2007, Chiang Mai, Thailand**

APPENDIX 6

PRESENTATIONS ON CARBON FINANCING WORKSHOP

Session I

THE CARBON FINANCE FRAMEWORK

Minh Cuong LEQUAN, GERES, ARECOP Planning and Technical Advisory Meeting, 22-25th January 2007, Chiang Mai.

Session I. Carbon Finance Framework

geres

- Kyoto protocol
- Greenhouse gases GHGs
- Flexible mechanisms
- Clean Development Mechanism
 - project cycleSome Key Concepts
- Methodology issues
 - following presentations: Carbon markets, how to step in

	ocol - International Context
Negotiation history of the	e Kyoto Protocol is as follows:
May. 1992	Adoption of the United Nations Framework Convention on Climate Change (UNFCCC) The ultimate objective of the Convention is stabilization of GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.
Mar. 1994	Entry into force of the UNFCCC
	International negotiations for setting quantified emission reduction targets of Annex I Parties for post- 2000 have started.
Dec. 1997	Adoption of the Kyoto Protocol at COP3
	International negotiations for establishing operational rules for the Protocol, including the Kyoto Mechanisms have started
Jul. 2001	Political agreement on outline rules of the Protocol (Bonn Agreement) at COP6 bis
	US Bush administration announced its withdrawal from the Protocol in March 2001.
Nov. 2001	Adoption of legal documents of operational rules of the Protocol (Marrakech Accords) at COP7 1st meeting of the CDM Executive Board
Dec. 2003	Adoption of operational rules for the Afforestation and Reforestation(A/R) CDM at COP9
	Russian Federation ratified the Protocol in December 2004
Feb. 2005	Entry into force of the Kyoto Protocol
Dec. 2005	The 1st session of the Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol (COP/MOP1) in Montreal
Nov.2006	The 2 nd session of the Conference of the Parties serving as the Meeting of the Parties to the Kyoto Protocol (COP/MOP 2) in Nairobi
Source: IGES (2006)	Fotocol (oor micri 2) in hericon

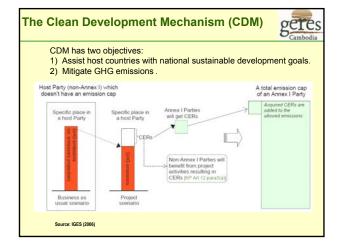
•Comn •Anne>	non b < 1 co	eenhou ut differ untries x 1 cour	entiate				-201	2
							Other Part	1442
Party Taron Estmated base		Party	Target	esition (EIT) Estimated tune-	Party	Target	Estimated base-	
		year emissions			year amesakons	1.1.1.1		year emissions
Portugal Gasece	27.0%	65.1	Russia Ukrane*	0%	3,040.3	Reland	10%	2.8
Greece Spain	15.0%		Okrane* Poland	-679		Norway	1%	424.0
Span Initianal	13.0%		Posand Romania*	-0%	264.9	New Zealand	0%	52.0
Febric	4.0%		Czech	-019	192.2	Canada	100	13.2
Faland	0.0%		Eulgalu*	-0%		Japan	-0%	1,223.0
France	0.0%		Hungary*	-0%	101.6		75	6.135.6
Netherlands	-6.0%		Skruakia			Switzerland	-7%	6,135.8
italy	-6.5%		Lithuania"	-2%		Luchtenatern*	-0%	02
Belgium	-7.5%		Estoria*	-8%	43.5	Alanaco*	-8%	0.2
LK	-12.5%		Latvia*	-019	43.5		-018	0.1
Austria	-13.0%		Sirvenia*	-0%	19.2			
Denmark	-13.0%		Croate	-5%	19.2			
Geimany	-21.0%	1,225.0	Crossed .	018		1		
Cermany Lusembourg*	-28.0%	1,225.0						
Creation's.	-28.0%	4,225.1						

Greenhouse Gases (GHGs)

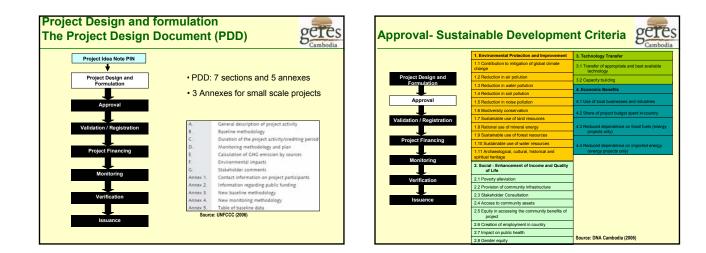
- · Only six GHGs targeted
- GHGs have different Global Warming Potentials (TCO2eq.)
- Biomass combustion produces CO², CH4, N²O
- Black Carbon and other GHGs not yet accounted

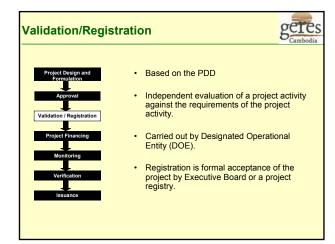
Source: IPCC (2001)

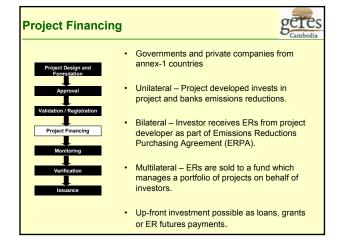
Flexible Mechanisms

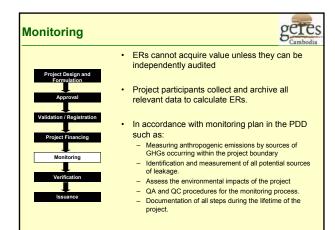

- · Annex-1 Parties : allowed to meet their reductions commitments cost effectively
- through 3 market based mechanism to reduce cost of emissions:

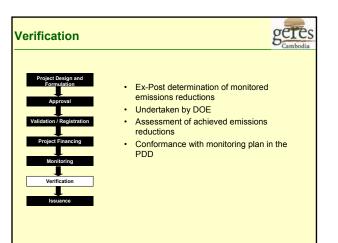
Emissions Trading (ET): acquire assigned amount units (AAU's) from other Annex I
Parties

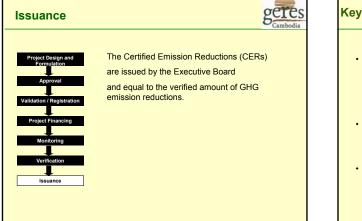

gere

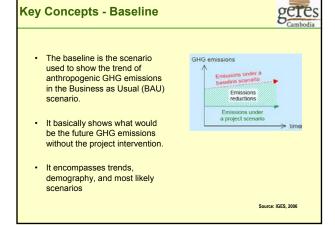

-Joint implementation (JI): receive allocated Emission Reduction Units (ERU's) for projects that reduce GHG emissions in other Annex I Parties,


•Clean Development Mechanism (CDM): Annex I Parties may create certified emission reduction (CER's) units through the implementation of projects to reduce GHG emissions in the territories of non-Annex I Parties




	he project participant must complete a roject Design Document.	geres
Approval	lost country should confirm project ctivity contributes to national sustainable evelopment goals	Carb
Validation / Registration or	n independent consultant (a designated perational entity, DOE) accredited by the xeculive Board review the PDD and ertifies that it meets requirements.	on Pro
Monitoring ar	roject must receive up-front Investment	Carbon Project Cycle
	DOE verifies the monitoring process	cle
Issuance	he EB issues appropriate number of ERs to the accounts of the host country nd/or project proponent	





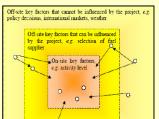


Key Concepts - Additionality

Key Concepts- Project Boundary and Leakage

Project Boundary

The project boundary encompassed all anthropogenic GHG emissions that are significant and reasonably attributable to the project


Leakage

Г

geres

Leakage refers to any GHG emissions that occur outside of the project boundary, as a result of the project. For example: Shifts of pre-project activity

Competing use leakage

geres

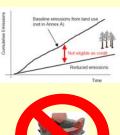
 High transaction costs 			Reduction	
associated with the carbon	Size	Туре	(t CO ₂ per yr)	€/tCO ₂
project cycle.	Very Large	Large hydro, geothermal, landfill methane	>200,000	0.1
 SSC projects are less able to absorb costs. 	Large	Wind power, solar thermal, energy efficiency	20,000 – 200,000	0.3 – 1
 Greater "development" dividend associated with SSC project activities. 	Small	Boiler conversion, DSM, small hydro	2000 – 20,000	10
 Simplified modalities and procedures to reduce 	Mini	Energy efficiency in housing & SME, mini- hydro	200 – 2000	100

PV

< 200

Source: Michaelowa et al (2003)

1000


CDM Methodology Issues (1) – Small scale

transaction cost

Project activities may be	Small Scale Project activities		
bundled together to count	L TYPE I - RENEWABLE ENERGY PROJECTS		
as one project.	I.A. Electricity generation by the user		
	LB. Mechanical energy for the user		
	I.C. Thermal energy for the user		
A single Designated	1.D. Renewable electricity generation for a grid		
Operational Entity should	II. TYPE II - ENERGY EFFICIENCY IMPROVEMENT PROJECTS		
validate, verify, and	I.A. Supply side energy efficiency improvements - transmission and distribution		
certificate a SSC project	II.B. Supply side energy efficiency improvements - generation		
activity or bundled small-	II.C. Demand-side energy efficiency programmes for specific technologies		
scale CDM project activities	II.D. Energy efficiency and fuel s-tiching measures for industrial facilities		
	ILE. Energy efficiency and fuel switching measures for buildings		
Cinculified Ducie at Decision	I.F. Energy efficiency and fuel switching measures for agricultural facilities and activities		
Simplified Project Design	III. TYPE III - OTHER PROJECT ACTIVITIES		
Document - separate	II.A. Agriculture		
Baseline study and	II.B. Switching fossil fuels		
Monitoring plan not	II.C. Emission reductions by low-greenhouse gas emitting vehicles		
required.	II.D. Methane recovery		
	II.E. Methane avoidance		

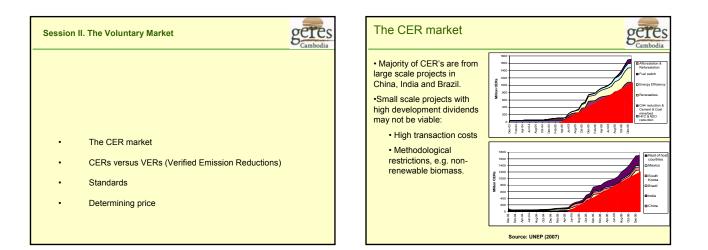
Methodology Issues (2) Non-renewable Biomass

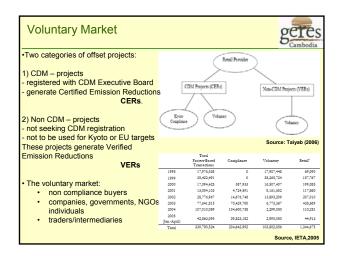
- ICS reduce GHG emissions by reducing the consumption of non-renewable biomass
- Non-renewable biomass = avoided deforestation
- Only afforestation and reforestation are eligible as LULUCF activities
- Ongoing call for public inputs... decision expected at MOP 4.
- ICPs are **not yet** eligible in the CDM market
- ICPs can be "pre-validated" in the voluntary Carbon market

geres

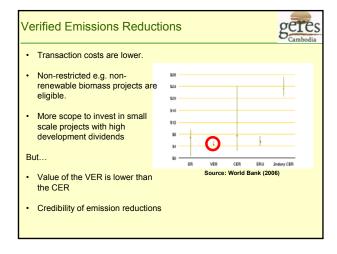
geres

Thank you for your participation


Session II


The Voluntary Market

Minh Cuong LEQUAN, GERES, ARECOP PTA Meeting, 22-25th January 2007, Chiang Mai.


geres

	20 Volume	04 Value	20 Volume	05 Value	1st(Volume	206 Value
	(MtCO ₂ e)	(MUSS)	(MtCO2e)	(MUSS)	(MtCO ₂ e)	(MUSS)
Compliance of which	107.07	543.59	368.30	2,665.31	79.12	906.14
CDM	97.00	485.01	346.15	2,544.30	75.61	886.85
Л	9.10	54.19	17.78	82.41	3.29	19.29
other	0.96	4.39	4.37	38.59	-	-
Voluntary and Retail Markets	2.92	5.57	6.05	43.03	0.08	0.55
TOTAL	109.99	549.16	374.34	2,708.34	79.19	906.69
I = million						

Determining price - Quality, Risk, Knowledge

Project design quality

- "Sustainable Development Criteria" (i.e. benefits)
- Methodologies
- Accuracy of baseline
- Depth of monitoring system

Determining price - Quality, **Risk**, Knowledge

- · Reputation, stability, and capability of the project developer
- Stage in project cycle: seed or tree? OTC or futures?
- Implementation risks: if regulations, market, country situation change...
- ER quantity and delivery schedule: when is Carbon Finance needed ?
- Delivery assurance / non delivery, say, if the project underperforms...

To address risks... Independent risk rating
 Provision against risk (monetary, or ERs from project pool)
 Share risk with buyer - Transfer risk to third party: hedging, insurance

Introduction

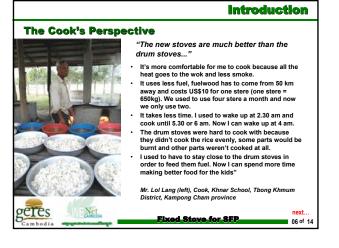
01 of 14

Background

- Most children of elementary school do not have enough
- meal before school, weaken their learning capacity. The UN-World Food Program (WFP) provides rice, cannet fish, cooking oil, salt, rice bean, etc.. to support schools to prepare breakfast.
- Each school has to organize cooking every morning, hiring local cooks, procure cooking fuel, procure vegetables, etc.. for an average of 225 portion/day
- The only affordable and accessible cooking fuel is WOOD somehow wood collection is a burden for the schools and the students as well.
- Heavy workload for the cooks, must finish at 7.00 a.m.
- Stoves used is not efficient metal drum stove • Each portion of breakfast requires 90 gram of wood
- geres Net Fixed Stove for SFP

The Project Fixed Stove Dissemination to support School Feeding Program in 429 elementary schools in 6 provinces Constructed by 12 NGOs, CEDAC, DORD, AHRDHE, DKC, HCDO, PADEK, COWS, CARITAS, NAPA, CADET, APA and OKRCD Organized by WENetCam, Technical support by CFSP Manada an Anna Funded by TNT WE Net geres next. SEP 02 of 14

Introduction Introduction The Stove Material: Termite soil, rice husk, straw Production: Owner-built stove 210 x 92 x 84 cm ize: Specification: Fixed Price: Main Users: Industry, Orph nage etc Fuel: Split Fuelwoo 30 - 45 % Wate Efficiency: ng Test Boili



Approx 80,000 Riels per burner including the price of bricks, chimney, and labor cost. Large capacity cooking - Hospital, Pagoda,

03 of 14

		Introdu	ction
Achie	vement		
	# of schools benefited	429 schools	
	# of students benefited	148,248 pupils	
	#of Fixed Stove	482 units	
	# of XXL NLS	102 units	
	FW saved by Fixed Stove	1,657,193.4 ton per year	
	FW saved by XXL NLS	75,165.5 ton per year	
	CO ₂ saved by Fixed Stove	2,724.4 ton per year	
	CO ₂ saved by XXL NLS	123.6 ton per year	
	Total CO ₂ reduction	2,848 tCO ₂ per year	
	11 Sec		
Gambodia	CANSON .	xed Stove for SFP	next 05 of 14

.

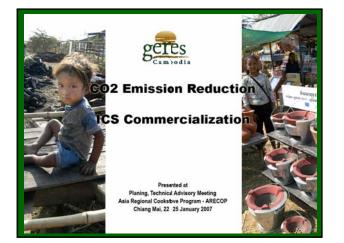
Leakages

Leakage is defined as the net change of GHG emissions which occurs outside the project boundary, and which is measurable and attributable to the CDM project activity

- GHG emitted from transportation means, including motorbikes, cars, airplanes, outboard engines, etc..
- Utilization of electricity (if the power plant does not use renewable energy) in the project.
- Utilization of air conditioning, cold storage, room heater, refrigerator...
- Consumption of office supplies; especially paper, petrochemical products, etc...
- Wood for stove testing purpose

Monitori					
Baseline					
Informat	ion Needed	Method	Sources & Report		
Proof of unsustation forest ex	inable	Research	Wood Energy Baseline Study for Clean Development Mechanism (GERES, IGES, CCCO – 2006)		
Needs A	ssessment	Study	School Needs Assessment of SFP-WFP (WENetCam 2006)		
Sources wood	of fuel	GIS Analysis	Landsat photo 1989, 2003; Land use map of Cambodia; School coordinate data base		
Fuel nee cooking mix	ded for and fuel	Study	School Needs Assessment of SFP-WFP (WENetCam 2006)		

nformation Needed	Method	Sources & Report
eal Fuel consumption with ard wood	Test – Fuel Consumption Test	FCT on School (Drum) Stove (GERES, 2006)
eal Fuel consumption with ubber wood	Test – Fuel Consumption Test	FCT on School (Drum) Stove (GERES, 2006)


Monitorin				
Additionality				
Information Needed	Method	Sources & Report		
Quality of stove installed	Quality Control	Monitoring report of ICS construction for SFP (WENetCam, Jun, Aug, Nov 2006)		
Real Fuel Saving with hard wood	Fuel Consumption Test	FCT on Improved School Stove (GERES, 2006)		
Real Fuel Saving with rubber wood	Fuel Consumption Test	FCT on Improved School Stove (GERES, 2006)		
Users' feedback	Survey	WENetCam monitoring report		
- 14	1			
eres	ADD4	Ixed Stove for SFP 11 of		

		Monitoring		
Additionality				
Information Needed	Method	Sources & Report		
Database of Improved School Stove	Applying school serial number	Data base of School Stove – SFP-WFP		
The	et.	next		

		Monitorin		
Leakages				
Scope of Leakages	Monitoring Method	Sources & Report		
Fuel consumption	Plan & Monitoring	Car & motorbike log book; Travel & Mission Plan; Travel & Mission Support Claim; Weekly Plan; Receipts		
Traveling in public transportation	Plan & Monitoring	Travel & Mission Plan; Mission Support Claim; Weekly Plan; Receipts;		
Utilization of fossil fuel for other purposes	Plan & Monitoring	Weekly Plan; Monthly Budget Plan; Receipts;		
Electric power consumption	Data recording & Monitoring	Electric bill; Receipts		

		Monitor	ing
Leakages			
Scope of Leakages	Monitoring Method	Sources & Report	
Air conditioning, cooling, etc	Data recording & Monitoring	Usually integrated in the electric pow bill	er
Paper consumption	Data recording & Monitoring	Office supplies request form; Receipt	s
Fuelwood & consumption in stove testing	Data recording & Monitoring	Weekly Plan; Monthly Budget Plan; Receipts; Reports of stove tests	
or just follow th	ne leakage default val	ue – 15% of CO ₂ emission reduction	
geres	et.	lxed Stove for SEP	next 14 of 1

Introduction

next

01 of 18

Introduction

03 of 18

Background

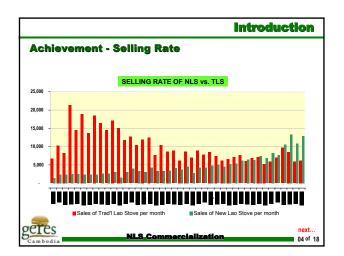
Biomass based cooking fuel - fuelwood and charcoal - remain highly demanded for many reasons.

Forest is the main sources of charcoal raw material - and is extracted without proper management and the extracted volume is beyond the forest yield

Pressure to Cambodian forest is getting higher; threatening biodiversity reserves, affecting watersheds, causing river siltation etc....

GERES developed three approaches to response to the forest pressure:

- Demand side Introduction of improved cook stove to reduce fuelwood
 and charcoal consumption
- Lower Supply side Up-grade the quality of charcoal to improve energy conversion efficiency
- Upper Supply side Energy plantation and sustainable forest management to secure sustainable wood supply


geres

Introduction
Response to the Demand Side
New Lao Stove Commercialization
New Lao Stove (NLS) is an improved cook stove
design, usually charcoal fueled, adopted from
the famous Thai Bucket Stove.
Introduced to Cambodia in 1999, disseminated
through commercialization since 2000.
Thoroughly monitored since 10th May 2003.
NLS dissemination is intending to substitute
traditional stove to reduce charcoal
consumption for cooking.
Reduction of forest pressure from demand side.

NLS Commercializati

02 of 18

			Introd	uction
Compai	rison of NLS &	TLS		
	NLS	Aspects	TLS	
	Baked clay	Material	Baked clay	
	Full body height	Metal cover	Partial	
1 A	Semi-mechanical	Production	Manual, artisan	-
H	Full body height, 2 cm	Insulation	Lower half, 1 cm	
	Charcoal	Fuel	Multi	
	29%	Efficiency	25%	
	12 kg	Weight	3 – 8 kg	
	Multi sizes	Pot size	Limited sizes	
	2.5 to 4 USD	Price	1 – 2 USD	
	3 years	Lifetime	1 year	

			Introdu	uction
Compa	rison of NLS &	TLS		
	NLS	Aspects	TLS	
	11 mm	Pot rest	22 - 26 mm	
- Billion	35 – 40 mm thickness	Grate	~ 15 mm thickness	
Land a	37 holes of 18 mm	Grate holes	Uncertain	-
eres	NLS.C	ommerciali		next 06 of 18

A - 1	Desft of TLO/Usit	Destites fill Office
Actors	Profit of TLS/Unit	Profit of NLS/Un
PRODUCERS	600 KHR	2,000 KHR
MIDDLEMEN	500 - 700 KHR	1,000 - 1,500 KH
RETAILERS	500 - 700 KHR	1,500 - 2,000 KHI
	aditional stove, since 200 nd gets higher monthly in	
he was producing tr	aditional stove, since 200 nd gets higher monthly in	
he was producing tr	aditional stove, since 200: nd gets higher monthly in Tra	come.
the was producing to njoys more profits a	aditional stove, since 200 nd gets higher monthly in Tra th 400	come. aditional N
the was producing tr njoys more profits a Selling rate per mon	aditional stove, since 200 nd gets higher monthly in Tra th 400 - 50	come. aditional N - 600 units 1,200

NLS Benefit	5
Fuel Saving	
The average consumption of a family burning charcoal with Traditional Lao Stove is <mark>2.12 kg/day/family</mark> or 773.8 kg/year/family	
When the family use NLS, it can <mark>save 21.76% of charcoal</mark> or 0.46kg/daylfamily or 168.38 kg/year/family	
97.6% of NLS users are families burning charcoal as cooking fuel	
The average consumption of a family burning wood with Traditional Lao Stove is <mark>2.775 kg/day/family</mark> or 1,013 kg/year/family	
When the family use NLS, it can <mark>save 21.49% of wood</mark> or 0.596kg/day/family or 217.67 kg/year/family	
2.4% of NLS users are families burning wood as cooking fuel	
	xt of 18

		NL	<mark>S Bene</mark>
sers			
	Cooking cost with Traditional	Stove	
1	Price of Traditional Stove	5,000	KHR
2	Average charcoal consumption per day	2.12	kg per day
3	Price of charcoal	500	KHR per kg
4	Charcoal cost per year	386,900	KHR
	Total cost	391,900	KHR per year
	Cooking cost with Improved Co	ok Stove	
1	Price of Improved Cook Stove	13,000	KHR
2	Average charcoal consumption per day	1.66	kg per day
3	Price of charcoal	500	KHR per kg
4	Charcoal cost per year	301,782	KHR per kg
	Total cost	314,782	KHR per year
	Money saved from charcoal per family	77,118	KHR per year
TRO	Money saved from charcoal per family	19.28	USD
ICS	NLS Commercializatio	n	

			NLS Benefit
loney Sav	/ing		
Period	no of ICS sold (in unit)	cumulative of family using ICS	Unspent money to buy charcoal (in USD)
Year 1	15,881	12,505	81,103.04
Year 2	36,116	40,943	543,521.18
Year 3	51,912	81,818	1,252,374.07
Year 4	96,657	156,132	2,171,839.95
	Money saved fror	n charcoal (in USD)	4,048,838.25
The			
ICS	NLS Co	mmercialization	ne 10

Replacement	e is <mark>1.27 units l</mark> period <mark>is 36 me atio wood - cha</mark>	onths			
	NLS Sold in the	Wood save	d by families in to	n of wood	CO ₂ emission
Period	period	Burn wood	Burn charcoal	Tot. saved	reduction
Year 1	15,881	23	4,276	4,298	7,067
Year 2	51,997	151	28,655	28,806	47,357
Year 3	103,909	349	66,026	66,375	109,120
Year 4	193,757	664	125,668	126,331	207,689
	365,544	1,186	224,624	225,811	371,233

_			_	_
V-1	100	1.6		
1.2.1	11.	K.)		ر ک

next... 12 of 18

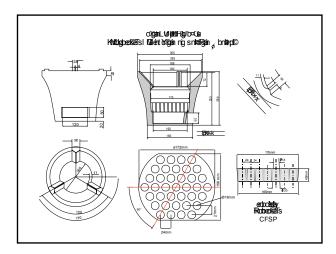
Leakage is defined as the net change of GHG emissions which occurs outside the project boundary, and which is measurable and attributable to the CDM project activity

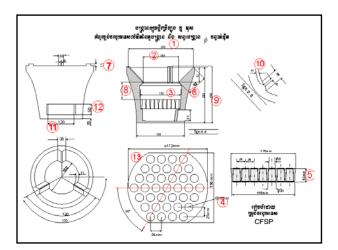
- GHG emitted from transportation means, including motorbikes, cars, airplanes, outboard engines, etc..
- Utilization of electricity (if the power plant does not use renewable energy) in the project.
- Utilization of air conditioning, cold storage, room heater, refrigerator...
- Consumption of office supplies; especially paper, petrochemical products, etc...

• Wood and charcoal for stove testing purpose

		Monitorin
Baseline		
Information Needed	Method	Sources & Report
Proof of unsustainable forest extraction	Research	Wood Energy Baseline Study for Clean Development Mechanism (GERES, IGES, CCCO – 2006)
Volume of charcoal flow to Phnom Penh	Research	Study on charcoal and fuelwood flow to Phnom Penh (GERES, 2006)
Conversion ratio of wood to charcoal	Research	Traditional Kiln Test (CFSP, 2004)
Potential fuel saving of NLS	Test, Adapted Water Boiling Test	Adapted Water Boiling Testing report (CFSP, 2002)
eres	NLS Com	nercialization 13

		Monitoring
Baseline		
Information Needed	Method	Sources & Report
Lifetime of NLS & TLS	Research	Improved Cookstove Lifetime Survey Report (GERES, 2006)
Net fuel saving of NLS	Test, Household Fuel Consumption Test	Household Fuel Consumption Test Report (CFSP, 2003)
NLS equipment ratio in a household	Study	Study on NLS Users in 5 Urban Settlements (DATe, CFSP, 2003)
Ratio of HH burning charcoal & fuelwood	Study	Study on NLS Users in 5 Urban Settlements (DATe, CFSP, 2003)
eres	NLS Com	next nerclalization 14 of


Information Needed	Method	Sources & Report
Net fuel saving of NLS	Test, Household Fuel Consumption Test – every six month	Regular Household Fuel Consumption Test Report (CFSP)
NLS equipment ratio in a household	Study	Study on equipment ratio in 7 provinces (CFSP, 2005)
Durability of NLS	Study	Improved Cookstove Lifetime Survey Report (GERES, 2006); Cambodia case study – ICS dissemination (WINROCK, 2005)


Additionality							
Information Needed	Method	Sources & Report					
Quality of NLS	Regular AWBT, Quality Check,	Regular AWBT report; Scoring Sheet of NLS standard;					
Mould calibration	Regular test	Regular clay testing (once in 3 months for new producers, once in 6 months for full run producers)					
Sales of NLS per producer per month	Log-book, monthly monitoring	Database of NLS sales per producer per month, monthly sales report					
Charcoal quality – calorific value	Laboratory test	Calorific value test result, LUACOB – UIT Tarbes, France (2004, 2006)					

Informat	ion Needed	Method	1
Informat	ion Needed	Mathad	
		wiethod	Sources & Report
Fuel con	sumption	Plan & Monitoring	Car & motorbike log book; Travel & Mission Plan; Travel & Mission Support Claim; Weekly Plan; Receipts
Traveling transpor	g in public tation	Plan & Monitoring	Travel & Mission Plan; Mission Support Claim; Weekly Plan; Receipts;
Utilization fuel for con purposes		Plan & Monitoring	Weekly Plan; Monthly Budget Plan; Receipts;
Electric consum		Data recording & Monitoring	Electric bill; Receipts

Information Needed	Method	Sources & Report
Air conditioning, cooling, etc	Data recording & Monitoring	Usually integrated in the electric power bill
Paper consumption	Data recording & Monitoring	Office supplies request form; Receipts
Fuelwood & Charcoal consumption in stove testing	Data recording & Monitoring	Weekly Plan; Monthly Budget Plan; Receipts; Reports of stove tests

	Score of Quality Control									
					Х					
X-5mm	X-4mm	X-3mm	X-2mm	X-1mm	Х	X+1mm	X+2mm	X+3mm	X+4mm	X+5mm
0	1	2	3	4	5	4	3	2	1	0
					18					
17.5	17.6	17.7	17.8	17.9	18	18.1	18.2	18.3	18.4	18.5
0	1	2	3	4	5	4	3	2	1	0

				ember 8			
				res of sa	· ·		
	NLS #1	1	2	3	4	5	
1	Port rim internal dia. (top)	4	4	5	4	5	22
2	Dia. of lower pot rim	3	4	3	4	4	18
3	Dia. of base of combustion chamber	5	5	5	5	5	25
4	Air hole diameter in mm	4	4	4	4	4	20
5	Grate thickness	3	3	3	3	3	15
6	Length of slope	4	4	4	4	4	20
7	Port rest height	4	4	4	4	4	20
8	Combustion chamber height	4	5	5	4	4	22
9	Stove body height after fixing insulation	4	3	3	3	3	16
10	Slope pot rest thickness/height	3	4	3	3	3	16
11	Ash hole (air inlet) (L)	4	3	3	3	3	16
12	Ash hole (air inlet) (W)	4	3	3	3	3	16
13	Grate hole number	5	5	5	5	5	25
		51	51	50	49	50	
			A	verage	score =	50.2	
			Stand	ard Dev	iation =	0.8367	
		Ba	tch Pro	duction	Score =	77.2	

Session V

Elements for group discussion

Cambodia Carbon Facility

Regional Outreach

Minh Cuong LEQUAN, GERES, ARECOP PTA Meeting, 22-25th January 2007, Chiang Mai.

Group Discussion – CCF Outreach

geres

- Problem statements
- Experience piloted in Cambodia
- Proposed international framework
- Way forward / Open questions

Problem statements

- CDM transaction costs prohibitive
- CDM methodologies inadequate
- Complex and costly procedures

pere

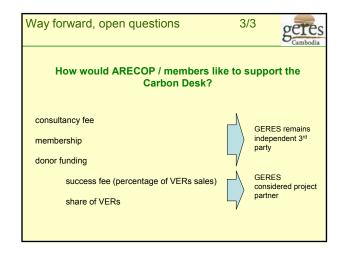
=> so far, CDM fails to address energy-poverty issues

Voluntary market - at the condition of ER Quality- but...

- knowledge and human resources of developers usually insufficient
- financial capacity not commensurate with consultancy costs
- risk sharing and market knowledge insufficient for balanced negotiation with buyers

Experience piloted in Cambodia	geres _{Cambodia}				
Identified with DNA as organization involved in RE and	EE				
4 PIN, 2 PDD (School stoves, NLS)	done				
Negotiation with Audit companies, Carbon buyers	completed				
PDDs planned: palm sugar stoves, char briquette, biof	uel.				
 Support from World Bank (8 months: November'06 – June'07): Seed grant to setup the Carbon Finance instruments/procedures, for international outreach 					
 No resources yet to support international outreach furthe 	er				

Proposed international framework: facilitating Carbon Finance for SD projects



- GERES Cambodia would like to serve SSC project developers to towards Carbon Finance
 - access with quality ERs to sell
 - in fair and transparent conditions
- Access => Helpdesk / Technical Assistance
 - capacity building
 - on-job training
 - hotline
- Fairness => web-based clearing house
 - project ratings
 - documentation
 - market information

Way forward, open quest	ions	1/3	geres
Do you plan to seek Carbon Fir	nance?	yes / no	
Do you need assistance ?		yes / no	
For what project(s) ? V		assistance ? minary capacity buil	ding
	cond	nodology luct baseline studies p monitoring system	
	asse nego	carbon buyers ss / mitigate risks otiate with carbon bu age Carbon assets	iyers

Way forward, open questions 2/3

